

Mika Karaila Research Director Valmet

2nd November 2018 / STVY

XR in Industry

The current status of available devices

Tools for maintenance

Use cases

Future roadmap

XR Devices

From smart phones to industrial helmets

• Practical & commonly available phones

- Basic Android based software
- Cheap
- Latest coming device: Oculus Quest

• Mid price: MR Headset

- Samsung Odyssey
- Other VR Headsets: HTC Vive, Oculus Rift, etc.

• Enterprise devices:

- HoloLens
- DAQRI Helmet
- Varjo / StarVR (premium display resolution)

Tools for maintenance

Phone / tablet

- AR based remote support application through Pointr (Valmet branded)
- Allows secure, low bandwidth bi-directional video & audio
- Field note for offline use:
- In many cases there is no Internet connectivity in all places
- As user is back to online connection, field notes can be shared, annotated & discussed

MR Headset

- 360 videos for training (note: virtual training applications for HoloLens & Oculus Go)
- Virtual mill / ship, check route & device location (get familiar as with google street view)

HoloLens

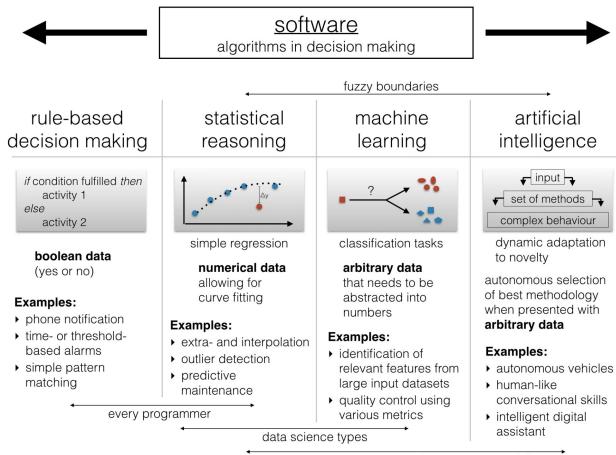
• On-site, hands free working (Safety regulations can vary)

Tools for maintenance

Providing information

Location based:

- HoloLens can do internal mapping based on reference
- Image recognition from video stream / photos
 Live-values:
- DCS / PLC data through OPC UA
- IoT data https/mqtts from Cloud


Web server(s):

- Web pages (embedded browser) on VR / MR
 360 videos:
- Store knowledge for training

Machine learning & predictive maintenance

complex systems specialists

Source: Roger Attic: https://www.linkedin.com/pulse/intelligent-things-its-all-machine-learning-roger-attick

Autonomous Al

Assistive AI

Example: drilling engineer

- Observing the world: In this case, AI can literally look around at years of operational and geological data related to a company's wells and drilling rights, as well as public data such as geophysical data related to the land
- Reasoning about it to move toward some goal or goals: "Reasoning" describes how a question of whether to drill an exploratory well on one of these leases is answered. Assistive AI allows a human to ask literal questions of a machine in an attempt to derive answers to their problem.
- Making justified and explainable recommendations to users: Al algorithms then create models that provide answers to those questions and can help the drilling engineer recommend whether to drill an exploratory well based on 10 years' worth of data. A human can not in any reasonable time evaluate and analyze that much data, but Al models provide those recommendations to the drilling engineer.

https://www.forbes.com/sites/forbestechcouncil/2017/12/21/assistive-ai-not-autonomous-ai-is-the-path-to-improved-operational-efficiencies/#8cfacc41efb1

Assistive AI, Not Autonomous AI

=> The Path To Improved Operational Efficiencies

- Supporting the user to explore hypotheticals: Based on the results of this exploratory well, the machine can help the engineer look at what returns a production well might provide on the investment.
- **Recording decisions and actions taken:** The AI algorithms record the decisions and actions taken by the drilling engineer and then the engineer either accepts the recommendation made by the models or rejects them and makes his or her own decision.
- Measuring impacts and outcomes to learn and improve over time: Al's greatest value is its learning attribute. It measures the
 outcome and KPIs based on the decisions and actions taken by the drilling engineer and uses that to learn and improve
 recommendations for better impact on the KPIs. The reasoning process builds up a bank of knowledge -- an answer (solution) to a
 question (problem).

https://www.forbes.com/sites/forbestechcouncil/2017/12/21/assistive-ai-not-autonomous-ai-is-the-path-to-improved-operational-efficiencies/#8cfacc41efb1

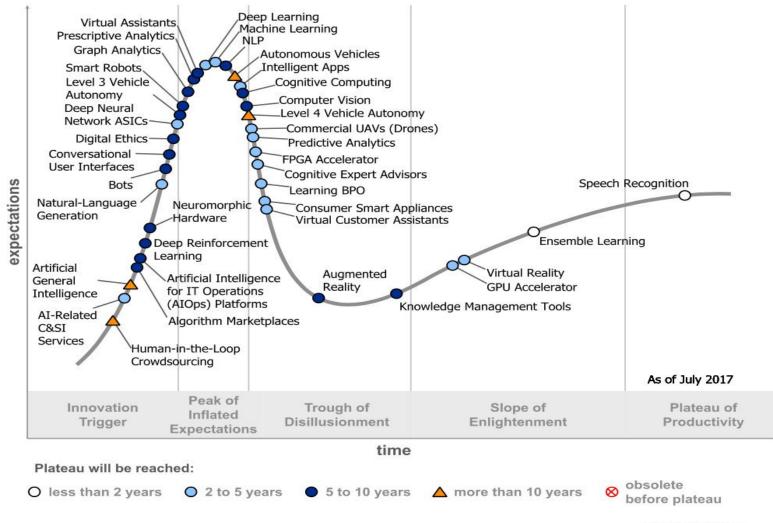
Assistive AI: How?

What is needed?

- Models, Not Static IT Applications, Offer Improvements In Operational Efficiencies
- Assistive AI Helps Humans Demonstrate Business Value More Efficiently

https://www.forbes.com/sites/forbestechcouncil/2017/12/21/assistive-ai-not-autonomous-ai-is-the-path-to-improved-operational-efficiencies/#8cfacc41efb1

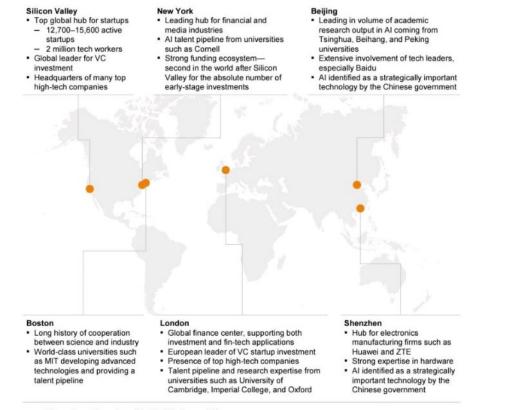
Human-like Al


	Rule-based RPA	Narrow Al		Broad "human-like" Al	
Cognitive modes	Rule-based inference	Supervised learning	Unsupervised narrow learning	Unsupervised context-aware learning	Self-aware unsupervised learning
Natural language processing	 Spelling and grammar check 	Voice-to-text dictation	• Personal assistant apps with basic voice Q&A	• Real-time dialogue and translation	• Idiom, sarcasm, and nuance articulation
Computer vision	 Scanning typed characters in format forms 	 Facial recognition Scanning handwriting 	Complex classification (for example, video segment search)	 Vision systems in complex settings (for example, vehicles) 	Autonomous exploration agents
Pattern recognition	Loans risk inference based on rules	• Fraud detection (based on known patterns)	 Product recommen- dation based on hidden customer preference 	 Real-time clinical diagnosis Anticipate cyberattacks 	• Mimicking intuition and creative connect- ing of dots
Reasoning and optimization	History-based predictive forecasting	• Forecasting using demand-sensing input with learned segmentation	 Identifying hidden biases from forecasting data and input 	• Beating best-in-class human forecaster in specific domain	• Beat best-in-class human forecaster in several domains
	Now-2025			2025 and beyond	

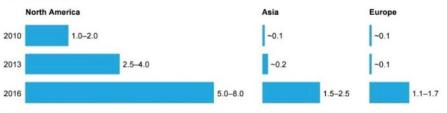
Notes: RPA is robotic process automation. Al is artificial intelligence.

Valmet 🔷

Status of AI: Autonomous Vehicles, AR & VR


Figure 1. Hype Cycle for Artificial Intelligence, 2017

© 2017 Gartner, Inc.

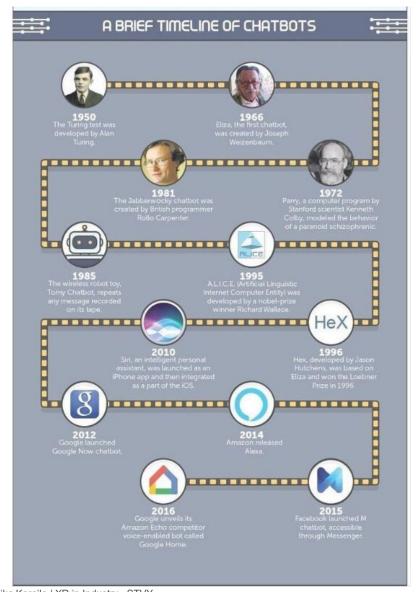


Al investments – US & China leading

... and the external investment behind their growth¹

1 Estimates consist of annual VC investment in Al-focused companies, PE investment in Al-related companies, and M&A done by corporations. Includes only disclosed data available in databases, and assumes that all registered deals were completed within the year the transactions were announced.

SOURCE: Capital IQ; Pitchbook; Dealogic; S&P; McKinsey Global Institute analysis

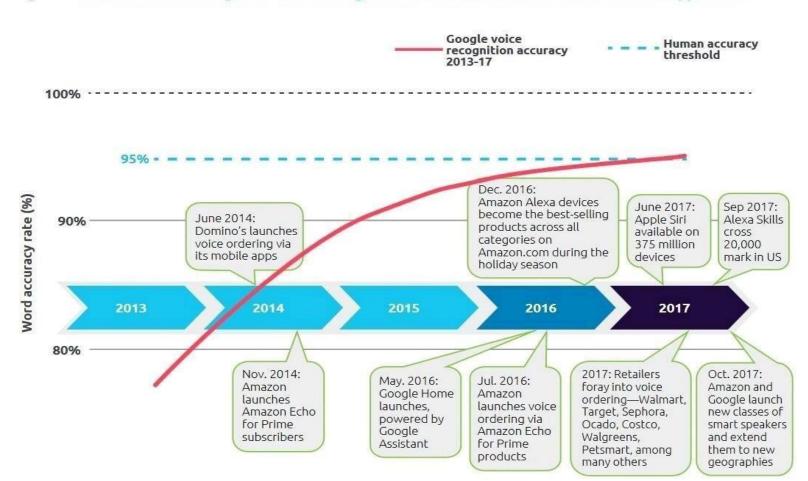


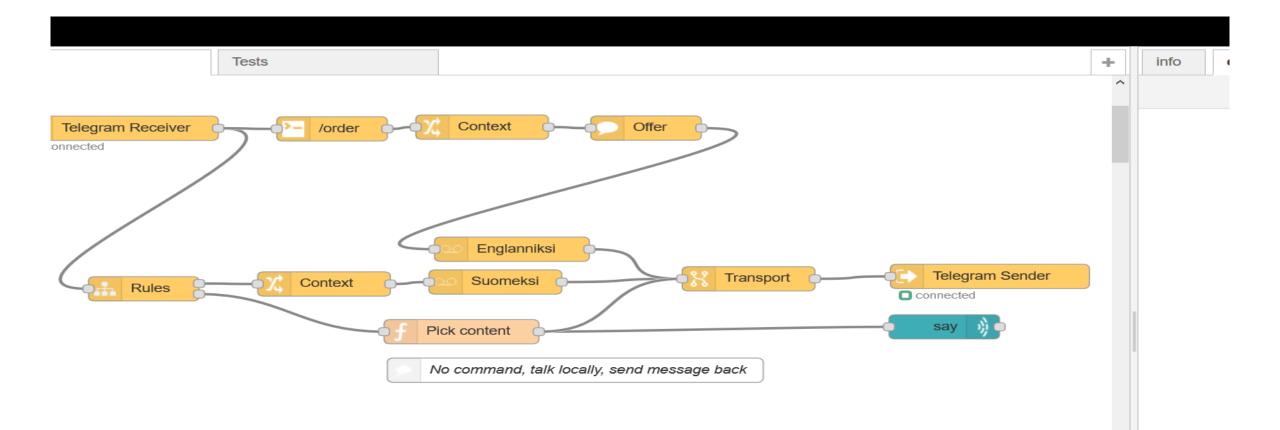
Chatbots & AI / NLP for Technical support

- Chatbot availability 24/7
- Industrial case: technical & domain knowledge -> limited scope
- Can visualize the customers' problems (needs some extra work, next demo will show)
- Product / service training
- Feedback channel with AI, learning & new recommendations

A brief timeline of chatbots

Short history of commercial voice recognition




Figure 1. Advances in voice recognition have fueled growth in voice assistants and their commercial applications

Source: Amazon, Google, Microsoft, Apple, and other company websites and press releases. Kleiner Perkins, Internet Trends 2017, May 2017. Google voice recognition data as of 5/17/17 and refers to recognition accuracy for English language.

Node-red Telegram chatbot

Example of flow based chatbot

Telegram at mobile phone

Screenshot, simple audio feedback as MP4

Alexa – Valmet Expert first proto-type

Bind Valmet DNA real-time values to Alexa and other external data from manuals (PDF files)

Tekniikka & Talous: article

työssään."

suomenkielisestä tekstistä chatbotit tunnistavat lähinnä avainsanoja Chatbotit alkoivat yleistyä, kun yrityksissä ymmärrettiin, että asiakasta ei haittaa, vaikka hän

ymmärtäisi keskustelevansa koneen kanssa, kunhan hänen ongelmaansa löytyy ratkaisu. "Asiakkaat kysyvät chatissä sa-

moja kysymyksiä. Botti tunnistaa niistä noin 70 prosenttia ja antaa niihin vakiovastauksia", sanoo mobiilioperaattori Dna:n digiliiketoiminnan johtaja Kati Sulin.

Tarvittaessa asiakaspalvelija eli "bottikuiskaaja" muokkaa vastauksia.

"Olemme opettaneet chatbotteja omalla aineistolla. Monimutkaisissa tilanteissa asiakasta palvelee ihminen.'

DNA:N OSALTA chatbot ilmentää suurta muutosta. Yhtiö lähti neljä vuotta sitten ensimmäisten joukossa Suomessa kääntämään liiketoimintaansa dataohjautuvaksi. Siiloutunut data otettiin yhteiseen käyttöön ohjelmistoyhtiö Solitan Amazonin pilveen tekemälle data-alustalle

"Yhteen koottua tietoa analysoimalla ymmärrämme, miten asialääkärille mahdollisuutta perehtyä siihen

Lisäksi yhtiö kokeilee erilaisia koneoppimisen malleja. "Parhaisiin tuloksiin päästään

auttamalla ihmistä työssään tekoälvllä", sanoo Terveystalon digitalisaatiosta vastaava johtaja Juha Juosila

Järjestelmä tarjoaa esimerkiksi keinon ennustaa työkyvyn kehitystä ja eläköitymistä.

"Datan koneellinen analysointi tarjoaa mahdollisuuden kehittää ennakoivaa terveydenhuoltoa ja esimerkiksi hälyttää elintapasairauksien riskeistä."

VALMET on kehittänyt viime vuodesta omaa Expert-bottia, jolta käyttäjä voi kysyä apua Valmetin koneiden ja laitteiden huoltami-

Valmetin automaatioliiketoiminnan tutkimusjohtajan Mika Karailan mukaan Amazonin työkaluilla tehty sovellus käyttää vielä suppeaa sanastoa.

Hiljan palveluun tuli puhuva Valmet-avatar. Se synkronoi huulten liikkeen puheeseen, liikkuu ja

joka esittää erilaisia vaihtoehtoja. voi osoittaa keskustelun kohdetta "Parhaisiin kuvassa. tuloksiin päästään

APU RUUDULLA, Valmetin avatar toimii virtuaalisena assistenttina,

vaihtoehdoista. Lopullisen päätöksen tekee asiakas, koska tehtaalla on voitu tehdä paikallisia muutoksia". Kairaila sanoo.

sä esimerkiksi startupien apua, mutta sillä on nykyisin omaa henkilöstöä sekä alihankkijoita kehittämässä pilvipalveluita.

Tekoälv vaatii empatiaa

Aal

ens

opi

Eu

ner

ve

eu

ha

ke

ne

sa

sti

sii

tie

tc

Suomi ja Ruotsi ovat Euroopassa kärjessä tekoälyn käyttöönotossa Tähän päätyy Microsoftin konsulttiyhtiö Ernst & Youngilla teettämä tutkimus Tutkimus tehtiin 15 maassa ja siihen osallistui 277 vritvstä, joista 22 Suomesta, myös viereisessä jutussa käsitellyt Dna, Tervevstalo ja Valmet Suomi on Euroopan kär-

keä tekoälyn hyödyntämisessä. Silti yli puolet yrityksistä vasta suunnittelee tai pilotoi tekoälyn käyttöä", sanoo Microsoftin teknologiajohtaja Mikko Viitaila. Tärkeimpiä tekoälyn käyt-

tökohteita ovat ennustava analytiikka, huolto ja älykäs automaatio, Vastaajista yli 70 prosenttia Euroopassa ja yli 90 prosenttia Suomessa uskoo niiden hyödyttävän liiketoimintaa Tutkimukseen osallistuneet eivät pitäneet osaamis-

taan millään osa-alueella keskimääräistä parempana. Suomalaisyhtiöt arvioivat itsensä muuta Eurooppaa paremmiksi etenkin tekoälymuutoksen johtamisessa.

Suomessa ollaan kärjessä myös edistyneen analytiikan, avoimen yrityskulttuurin, ekosysteemiyhteistyön ja ketterän kehityksen osalta. Tekoälyn hyötyjen toteutu-

minen edellyttää kykyä myös empatiaan. Tutkimuksen mukaan sen

arvoa ei ole vielä tunnistettu Suomessa.

19 27 November 2018 auttamalla ihmistä

"Virtuaalinen assistentti kertoo

Valmet on kokeillut kehitykses-

MIKAEL SJÖSTRÖM

Use case: Artificial Intelligence, Assistive AI & Chatbot

Domain knowledge with limited scope

Use case: Valmet Performance Center

MR Headset based collaboration & remote support

Use case: Collaboration, avatar movements & actions

Avatar talking and moving & using laser pointer

Use case: Three users, 2 Valmet experts and customer at virtual mill

Multiuser collaboration - Fast support without travelling

Use case: Ship maintenance actions

Features: Teleport and 360 video, training & knowledge storing

Valmet Performance Center video streaming

Testing HoloLens to HoloLens video call

Valmet Collaboration in Mixed Reality

Same tool in different environments

Valmet XR Solution

Multipurpose mixed reality platform streamlining maintenance engineering tasks

Virtual training

- Immersive learning (360 videos) embed in virtual environment
- Beforehand training and virtual tour ——>Shortening maintenance tasks
- Tacit knowledge transfer
- Risk free training (marked hazardous areas and safety evaluation)

Remote collaboration & support

- Less travelling Expert availability
- Enhancing customer collaboration ——> Virtual meeting place ——> Faster trouble shooting
- Secure communication channel and less internet bandwidth
- · Checking real-time data and Valmet web links
- Virtual collaboration with Valmet performance center (more accurate and faster support)

Future Visions

Devices:

- New next generation devices are coming Some will be cheaper like Oculus Go/Quest (standalone VR)
- More powerful, more integrated capabilities (rumors about new HoloLens)
- Field of view (FOV) wider and more resolution (Varjo and other providers)

Applications:

- Collaboration, multi user virtual environments
- Remote support tools
- Visual recognition (classify objects real-time)
- Al Assistant (knowledge integration)
- Language translation real-time

